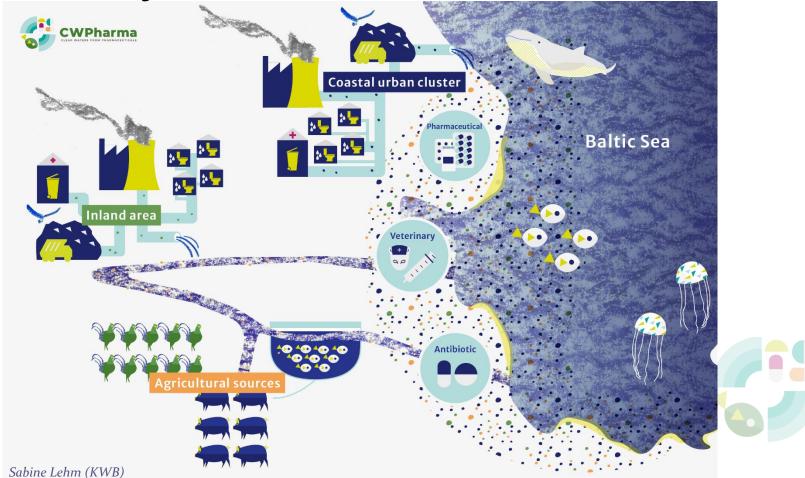


EUROPEAN REGIONAL DEVELOPMENT FUND



Evaluation of emission reduction measures

Veronika Zhiteneva Berlin Center of Competence for Water (KWB) CWPharma Project Final Seminar 18.11.2020

Sources of API contributions to the Baltic Sea

CWPharma recommendations

- Project work condensed into 20 recommendations
- Organized into 3 areas needing improvement
 - Collection/disposal of unused pharmaceuticals and pharmaceutical waste
 - Wastewater treatment
 - Knowledge of API emissions, environmental concentrations and ecological effects
- Barriers to implementation identified & discussed

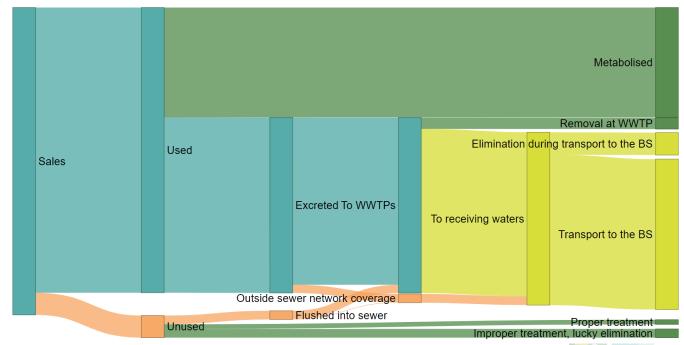
Improving collection and disposal of unused pharmaceuticals and pharmaceutical waste

Citizens should be able to return all **unused** human and veterinary medicines free of charge to dedicated collection points within all **Baltic Sea** countries

Increase the awareness of citizens, medical doctors, pharmacists, veterinarians and farmers about the negative effects of pharmaceuticals in the environment through targeted information campaigns

Improving collection and disposal of unused pharmaceuticals and pharmaceutical waste

- Hospitals and other healthcare institutions should collect their own pharmaceutical waste and send it directly to the country appropriate waste treatment facilities.
- Farmers should be responsible for organizing the transport of commercial amounts of unused veterinary medicines to the appropriate waste treatment facilities in their country.
- For separately collected pharmaceutical waste, high temperature incineration (~1100-1300°C) is the recommended treatment method.
 - Unused medicines collected with mixed household waste and incinerated at lower temperatures is the next best waste treatment option.

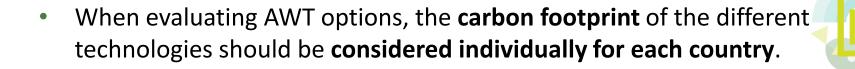


Improving wastewater treatment

- Emissions of environmentally risky APIs could be reduced by
 - reducing indirect discharges of APIs
 - 2. upgrading WWTPs with AWT

Improving wastewater treatment

- The suitability of AWT technologies should be determined on a site-specific basis by monitoring crucial water quality parameters and lab-scale testing.
- The application of ozonation should be followed by a biological post-treatment step.
- Implementing a national knowledge platform to share technical information on ozonation and activated carbon will speed up and improve uptake of WWTP and AWT upgrades.



Improving wastewater treatment

- Depending on the local target API, loading rates, and method of consumption, significant reduction in API emissions will require a combination of technical and non-technical reduction measures.
- In terms of cost and technical efficiency, API elimination via AWT upgrading should be implemented first at larger WWTPs and then at smaller WWTPs.

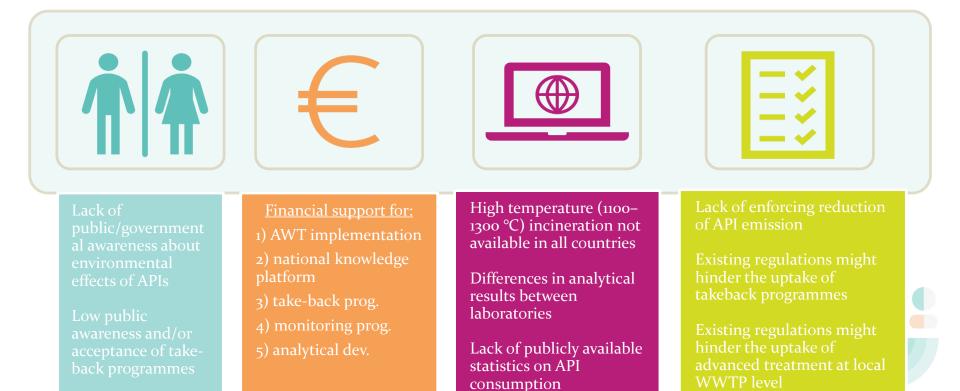
Improving knowledge of <u>API emissions</u>, environmental concentrations and ecological effects

- Environmental permits should require pharmaceutical plants to estimate their API emissions and impacts on WWTPs and surface waters.
- When necessary, environmental permit requirements for pharmaceutical plants should be further supplemented with industrial wastewater contract requirements.
- Increase the public availability of API consumption statistics.

1

Improving knowledge of API emissions, environmental concentrations and ecological effects

- Knowledge on the environmental risks of APIs must be improved.
- More studies on the use of veterinary medicines and their dispersal in the environment should be conducted.
- APIs should be included in **regular environmental monitoring programmes managed by national authorities**.
- Analytical methods for API detection, including metabolites and hormones, should be further refined to enable more comprehensive quantification of API concentrations in the environment.



Barriers to implementation

AARHUS UNIVERSITY

LÄNSSTYRELSEN ÖSTERGÖTLAND

latvijas vides, ģeoloģijas Un meteoroloģijas centrs

EUROPEAN REGIONAL DEVELOPMENT FUND

